Ο γρίφος της ημέρας – «Τα αντικείμενα» (για καλούς λύτες)

Υπάρχουν ορισμένα αντικείμενα άγνωστο πόσα.

Εάν διαιρεθούν δια του 3 αφήνουν υπόλοιπο 2.

Εάν διαιρεθούν δια του 5 αφήνουν υπόλοιπο 3.

Ενώ εάν διαιρεθούν δια του 7 αφήνουν υπόλοιπο 2.

Πόσα είναι τ’ αντικείμενα;

 

 

 

*Το ανωτέρω πρόβλημα προέρχεται από το βιβλίο του Κινέζου μαθηματικού Sun-T’su «Κλασική αριθμητική, Suan-ching» τ’ οποίο γράφτηκε το 65μ.Χ. Η λύση του στηρίζεται στο γνωστό Κινέζικο Θεώρημα των Υπολοίπων της Θεωρίας των Αριθμών. Το θεώρημα αυτό έγινε σ’ εμάς γνωστό από τον . Κάρολο Φρειδερίκο Γκάους (1777-1855).

 

 

Προτάθηκε από Carlo de Grandi

1 Comment

  1. Έστω x ο αριθμός των αντικειμένων

    x = 3*κ + 2, κ φυσικός ή x-2 = πολ3
    x = 7*λ + 2, λ φυσικός ή x-2 = πολ7
    άρα x-2 = πολ21
    x – 2 = 21μ, μ φυσικός
    x = 21μ + 2 (1)
    x = 20μ + μ + 2

    όμως x = 5ρ + 3, ρ φυσικός
    άρα μ + 2 = 5t + 3, t φυσικός
    μ = 5t + 1 (2)

    Από (1) και (2) έχουμε :
    x = 21*(5t + 1) + 2
    x = 105*t + 21 + 2
    x = 105*t + 23, t φυσικός

    Επομένως το πλήθος των αντικειμένων μπορεί να είναι:
    23 , 128, 233 , 338 , 443 , 548 , …

Leave a Reply

Your email address will not be published.


*