Ίππασος: Ο Πυθαγόρειος που βρήκε τον πρώτο άρρητο αριθμό!

Πρόκειται για ένα από τα λαμπρά μυαλά που αποφοίτησαν από την σχολή του Πυθαγόρα. Άφησε το δικό του στίγμα στα μαθηματικά και ειδικά στους άρρητους αριθμούς.

Ήταν ίσως ο καλύτερος μαθητής που φοίτησε ποτέ στη σχολή του Πυθαγόρα. Την ίδια στιγμή όμως ήταν και αυτός που κατάφερε να καταρρίψει τους Πυθαγόρειους, ανοίγοντας ένα νέο, πολύ σημαντικό κεφάλαιο για τα μαθηματικά.

Η διάσημη σχολή του Πυθαγόρα – Οι «θεϊκοί» αριθμοί και ελλιπής εξήγηση του κόσμου

Οι Πυθαγόρειοι δεν ήταν μια αμιγώς επιστημονική ομάδα. Για την ακρίβεια, η βασικές ανησυχίες τους κυμαίνονταν γύρω από την φιλοσοφία και την θρησκεία. Τα μαθηματικά ωστόσο κατείχαν την ύψιστη θέση στην διαμόρφωση της ιδεολογίας τους.

Οι αριθμοί για τον Πυθαγόρα και τους μαθητές του, ήταν κάτι το θεϊκό. Δεν ήταν απλοί συμβολισμοί που διευκολύνουν τον άνθρωπο να μετράει και να υπολογίζει. Ηταν κάτι ανώτερο από τον υλικό κόσμο, στον οποίο έβρισκαν εφαρμογή. Κάτι που άνηκε στη σφαίρα του ιδεατού και μόνο μέσα από την βαθύτατη νόηση γινόταν προσιτό.

Σύμφωνα με τους Πυθαγόρειους, ολόκληρο το σύμπαν ήταν αποτέλεσμα των αριθμών και της γεωμετρίας. Ωστόσο, από τον αρχαίο Ελληνα μαθηματικό και από όσους φοίτησαν στο Ομακοείον (το κτίριο ομαδικής διδασκαλίας των Πυθαγόρειων στην Κρότωνα της Ιταλίας) είχαν… ξεφύγει οι περισσότεροι αριθμοί. Στην σκέψη των μαθηματικών της εποχής, όλοι οι αριθμοί μπορούσαν να εκφραστούν ως κλάσματα δύο ακεραίων. Για τους Πυθαγόρειους δε, τα πάντα στον κόσμο ισοδυναμούσαν με έναν αντίστοιχο (ρητό) αριθμό. Αν αυτό ίσχυε όμως, ποιο ρόλο έχουν οι άρρητοι, που μάλιστα είναι και ασύγκριτα περισσότεροι.

Ο άνθρωπος που κατέρριψε όλα όσα πίστευαν οι Πυθαγόρειοι

Το μαθηματικό τμήμα της Πυθαγόρειας σχολής, ήταν ένα από τα πιο προηγμένα της εποχής. Το πασίγνωστο Πυθαγόρειο Θεώρημα είναι το πλέον χαρακτηριστικό παράδειγμα. Αν και οι ιστορικοί κατά καιρούς έχουν εκφράσει αμφιβολίες για τον «πατέρα» του θεωρήματος, είναι αποδεδειγμένο πως ανακαλύφθηκε την εποχή που η σχολή του Πυθαγόρα άκμαζε. Μάλιστα, συγγραφείς όπως ο Ευκλείδης και ο Κικέρων αποδίδουν με σιγουριά το επίτευγμα στον σπουδαίο μαθηματικό.

Ιδρυτής του μαθηματικού τμήματος στο Ομακοείον ήταν ο Ίππασος, ένας από τους σημαντικότερους μαθητές του Πυθαγόρα και αυτός που έμελε να καταρρίψει συθέμελα όσες ιδέες είχαν «οικοδομηθεί» μέσα στην σχολή που διακρίθηκε. Το εργαλείο του; Το θεώρημα που έκανε πασίγνωστο τον Πυθαγόρα!

Σε ένα ορθογώνιο τρίγωνο, το τετράγωνο των δύο κάθετων πλευρών ισούται με το τετράγωνο της υποτείνουσας. Αν οι δύο κάθετες πλευρές ισούνται με 1 όμως, τότε η υποτείνουσα έχει μήκος ίσο με την ρίζα του 2. Αυτός ο αριθμός είχε προβληματίσει τους Πυθαγόρειους, χωρίς όμως να κλονίσει την αμετάκλητη πεποίθηση τους, πως υπάρχει κάποιος ισοδύναμος ρητός που να ισούται με την ρίζα του 2. Αλλωστε, οι Πυθαγόρειοι αντιλαμβάνονταν πως υπάρχουν πάρα πολλοί ρητοί και ως εκ τούτου, η ρίζα που έψαχναν μπορεί να… κρυβόταν πίσω από κάποιους πολύ μεγάλους αριθμούς.

Ο Ίππασος όμως δεν μπορούσε να αφήσει μια ρίζα να τον… νικήσει. Προσπάθησε να αποδείξει πως ισούται με κάποιον αριθμό, αλλά κατάφερε να δείξει πως αυτός ο αριθμός δεν ήταν ρητός! Η Πυθαγόρεια φιλοσοφία δέχτηκε ένα αγιάτρευτο πλήγμα. Ενας αριθμός που δεν είναι ρητός, δεν μπορούσε να χωρέσει στην σκέψη των Πυθαγόρειων. Ολο τους το σύμπαν, ήταν φτιαγμένο από κλάσματα, μην αφήνοντας χώρο σε… παράλογους αριθμούς που τα δεκαδικά τους δεν έχουν σταματημό.

Ο ιδρυτής του μαθηματικού τμήματος της Πυθαγόρειας Σχολής, ήταν ο μεγαλύτερος προδότης που πάτησε ποτέ το πόδι του μέσα στους χώρους του επιβλητικού της κτιρίου. Παρόλα αυτά η απόδειξη του ήταν απόλυτα σωστή και αυτό έγινε άμεσα αντιληπτό από τον Πυθαγόρα. Η σχολή πλέον είχε δύο επιλογές. Να κλείσει ή θα «θάψει» την καταστροφική απόδειξη. Τελικά οι Πυθαγόρειοι επέλεξαν το δεύτερο, κατηγορώντας τον Ίππασο για μέγιστη προδοσία και πνίγοντας τον στην θάλασσα.

Ο Ίππασος έχασε την ζωή του, όμως η ρίζα του 2 διατηρήθηκε «ζωντανή», ως ο πρώτος άρρητος αριθμός στην ιστορία των μαθηματικών. Όπως οι ίδιοι οι Πυθαγόρειοι υποστήριζαν μάλιστα, οι αριθμοί υπάρχουν στην σφαίρα του ιδεατού, όχι μόνο εκεί που μας… χρησιμεύουν.

Κάπως έτσι, γράφτηκε η πρώτη σελίδα στο τεράστιο κεφάλαιο των αρρήτων αριθμών, οι οποίοι εκ των υστέρων αποδείχθηκαν πολύ περισσότεροι από τους ρητούς. Για την ακρίβεια, αν μπορούσαμε να επιλέξουμε έναν οποιοδήποτε αριθμό στην τύχη, τότε η πιθανότητα αυτός ο αριθμός να είναι ρητός είναι σχεδόν μηδενική!

Η απόδειξη που έμεινε στην ιστορία

Η απόδειξη του Ίππασου αναφέρεται από τον Αριστοτέλη ως χαρακτηριστικό παράδειγμα χρήσης της «προς άτομο απαγωγής». Ποιος όμως ήταν ο συλλογισμός του μαθηματικού;

Υπέθεσε ότι ο a/b είναι ρητός αριθμός με την ιδιότητα a2/b2 =2. Οι αριθμοί a και b είναι πρώτοι μεταξύ τους, γιατί πολύ απλά αν είχαν κοινό διαιρέτη τότε αυτός θα απλοποιούταν από το κλάσμα (πχ. Το 4/12 γράφεται ως 1/3) Οπότε καταλήγουμε στην σχέση a2=2b2.

Συνεπώς το a, επειδή έχει άρτιο τετράγωνο, είναι άρτιος αριθμός. Αρα, a = 2m και από αυτό έπειται ότι 4m2 = b2. Αρα b2 = 2m2. Αρα ο b είναι άρτιος, όπως και ο a.

Απο την στιγμή που ισχύει ότι a και b είναι άρτιοι όμως, έχουν κοινό διαιρέτη το 2. Αυτό είναι άτοπο, αφού η υπόθεση λέει το αντίθετο. Άρα το ρίζα 2 δεν μπορεί να είναι ρητός!

2 σχόλια

  1. Πετρος Βερυκιος

    Που υπαρχουν τοσο αναλυτικα στοιχεια για τον Ιππασο; μπορειτε να δωσετε συγκεκριμενη βιβλιογραφια.

  2. βασιλησ μαυρογενησ

    Για να γίνει καλύτερα κατανοητό συμπληρώνω τα εξής:
    Ρητός λέγεται κάθε ακέραιος , κλασματικός ή δεκαδικός αριθμός που μπορεί να μετατραπεί σε κλάσμα. Δεκαδικός με συγκεκριμένο αριθμό ψηφίων μετατρέπεται εύκολα σε κλάσμα πχ
    0,524 = 524/1000 Υπάρχουν δεκαδικοί με απεριόριστα ψηφία που όμως επαναλαμβάνονται περιοδικά πχ Α= 0,233233233……….. Και αυτοί μετατρέπονται σε κλάσματα 1000 Χ Α = 233,233233233233……. Και 1000 Χ Α – Α =233 και 999 Χ Α =233 άρα Α = 233/999 και επομένως είναι ρητοί. Υπάρχουν όμως και αριθμοί όπως πχ τετραγωνική ριζα του 2, 3, 5 κλπ το π = 3,14159………που έχουν άπειρο αριθμοί ψηφίων και που δεν μετατρέπονται σε κλάσματα άρα δεν είναι ρητοί. Ο Ίππασος απέδειξε λοιπόν ότι η τετραγωνική ρίζα του 2 δεν μπορεί να μετατραπεί σε κλάσμα. Η απόδειξη έχει ως εξής τετραγωνική ρίζα του 2 αν εξισωθεί με κλάσμα της μορφής α/β όπου α, β να μην έχουν κοινό διαιρέτη ( και αν έχουν τα απλοποιούμε και πάλι δε θα έχουν) , τότε υψώνοντας στο τετράγωνο τα δυο μέρη θα έπρεπε να έχουμε 2 = α.α/β.β πράγμα που δεν μπορεί να ισχύσει διότι και πάλι το κλάσμα δεν απλοποιείται και άρα δεν μπορεί να ισούται με 2 συμπέρασμα η τετραγωνική ρίζα του 2 δεν είναι ρητός αριθμός!!!!!

Απάντηση