Δεν αποτελούν εξεταστέα ύλη για το έτος 2021 τα κάτωθι:
Το Κεφάλαιο 3 Ολοκληρωτικός Λογισμός
Η Υπουργική απόφαση για ΓΕ.Λ σε μορφή pdf.
Η Υπουργική απόφαση για ΕΠΑ.Λ. και ΕΝ.Ε.Ε.ΓΥ.-Λ σε μορφή pdf.
Επομένως η εξεταστέα ύλη για το έτος 2021 καθορίζεται ως εξής:
«ΜΑΘΗΜΑΤΙΚΑ – Β’ ΜΕΡΟΣ» Γ΄ τάξης Γενικού Λυκείου των ΑΝΔΡΕΑΔΑΚΗ Σ., ΚΑΤΣΑΡΓΥΡΗ Β.,
ΜΕΤΗ ΣΤ., ΜΠΡΟΥΧΟΥΤΑ Κ., ΠΟΛΥΖΟΥ Γ.
Από το βιβλίο: «ΜΑΘΗΜΑΤΙΚΑ – Β’ ΜΕΡΟΣ»
Κεφάλαιο 1: Όριο -Συνέχεια συνάρτησης
Παρ. 1.1 Πραγματικοί αριθμοί.
Παρ. 1.2 Συναρτήσεις.
Παρ. 1.3 Μονότονες συναρτήσεις- Αντίστροφη συνάρτηση.
Παρ. 1.4 Όριο συνάρτησης στο Χ0
Παρ. 1.5 Ιδιότητες των ορίων, χωρίς τις αποδείξεις της υποπαραγράφου
“Τριγωνομετρικά όρια”
Παρ. 1.6 Μη πεπερασμένο όριο στο Χ0.
Παρ. 1.7 Όρια συνάρτησης στο άπειρο.
Παρ. 1.8 Συνέχεια συνάρτησης.
Κεφάλαιο 2: Διαφορικός Λογισμός
Παρ. 2.1 Η έννοια της παραγώγου, χωρίς την υποπαράγραφο “Κατακόρυφη
εφαπτομένη”
Παρ. 2.2 Παραγωγίσιμες συναρτήσεις- Παράγωγος συνάρτηση (χωρίς τις αποδείξεις των τύπων (ημχ)΄= συνχ και (συνχ)΄= -ημχ)
Παρ. 2.3 Κανόνες παραγώγισης, χωρίς την απόδειξη του θεωρήματος που
αναφέρεται στην παράγωγο γινομένου συναρτήσεων.
Παρ. 2.4 Ρυθμός μεταβολής.
Παρ. 2.5 Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού.
Παρ. 2.6 Συνέπειες του Θεωρήματος Μέσης Τιμής.
Παρ. 2.7 Τοπικά ακρότατα συνάρτησης, χωρίς το τελευταίο θεώρημα (κριτήριο της 2ης παραγώγου).
Παρ. 2.8 Κυρτότητα – Σημεία καμπής συνάρτησης. (Θα μελετηθούν μόνο οι
συναρτήσεις που είναι δύο, τουλάχιστον, φορές παραγωγίσιμες στο εσωτερικό του πεδίου ορισμού τους).
Παρ. 2.9 Ασύμπτωτες – Κανόνες De l’ Hospital.
Παρ. 2.10 Μελέτη και χάραξη της γραφικής παράστασης μιας συνάρτησης.
Παρατηρήσεις:
Τα θεωρήματα, οι προτάσεις, οι αποδείξεις και οι ασκήσεις που φέρουν αστερίσκο δεν διδάσκονται και δεν εξετάζονται.
Οι εφαρμογές και τα παραδείγματα των βιβλίων δεν εξετάζονται ούτε ως θεωρία ούτε ως ασκήσεις, μπορούν, όμως, να χρησιμοποιηθούν ως προτάσεις για τη λύση ασκήσεων ή την απόδειξη άλλων προτάσεων.
Εξαιρούνται από την εξεταστέα-διδακτέα ύλη οι εφαρμογές και οι ασκήσεις που αναφέρονται σε λογαρίθμους με βάση διαφορετική του e και του 10.