Ένας πυροσβέστης στέκεται στο μεσαίο σκαλί μιας σκάλας. Ανεβαίνει 3 σκαλιά και επειδή ξαφνικά πετάγονται φλόγες, κατεβαίνει 5 σκαλιά. Μετά από λίγο ανεβαίνει 7 σκαλιά και ρίχνει νερό.
Κατόπιν ανεβαίνει τα υπόλοιπα 6 σκαλιά και μπαίνει στο κτίριο. Πόσα σκαλιά έχει η σκάλα;
Προτάθηκε από Carlo de Grandi
Αφού ο πυροσβέστης στέκεται στο μεσαίο σκαλί, ο αριθμός των σκαλιών είναι περιττός.
Έστω (2ν+1) τα σκαλιά και ο πυροσβέστης στέκεται στο (ν+1) σκαλί.
Ανεβαίνει 3 σκαλιά, άρα βρίσκεται στο (ν+4) σκαλί.
Ξαφνικά πετάγονται φλόγες, κατεβαίνει 5 σκαλιά και βρίσκεται στο (ν-1) σκαλί.
Μετά από λίγο ανεβαίνει 7 σκαλιά και ρίχνει νερό και βρίσκεται στο (ν+6) σκαλί.
Κατόπιν ανεβαίνει τα υπόλοιπα 6 σκαλιά, άρα βρίσκεται στο (ν+12) σκαλί.
Είναι 2ν+1 = ν+12, δηλαδή ν = 11
2ν+1 = 2*11+1 = 22+1 = 23
Άρα η σκάλα έχει 23 σκαλιά.
Η σκάλα έχει 23 σκαλοπάτια και ο πυροσβέστης βρίσκεται στο 12ο σκαλοπάτι. Έστω «2β+1» ο αριθμός των σκαλοπατιών της σκάλας και (β+1) το σκαλί όπου στέκεται ο πυροσβέστης. Βάσει των δεδομένων της εκφωνήσεως του προβλήματος έχουμε την εξίσωση:
2β+1= β+1+3-5+7+6 (1)
2β+1=β+1+3-5+7+6 —> 2β+1=β+12 —> 2β-β=12-1 —> β=11 (2)
Αντικαθιστούμε τη (2) στην (1) κι’ έχουμε:
2β+1= β+1+3-5+7+6 —> 2*11+1=11+1+3-5+7+6 —> 22+1=28-5 ο. ε. δ.