Ένας Κουρέας μία μέρα βρήκε ένα περίεργο τρόπο να ζητήσει την αμοιβή του.
Στον πρώτο πελάτη που τον ρώτησε πόσο κοστίζει το κούρεμα του είπε: «Άνοιξε το συρτάρι διπλασίασε τα χρήματα που έχει μέσα και έπειτα πάρε 20€», το ίδιο έκανε και με τους επόμενους δύο πελάτες.
Μετά άνοιξε ο ίδιος το συρτάρι για να δει πόσα χρήματα έχει και παρατήρησε ότι δεν είχε τίποτα.
17,5
10 ευρώ είχε αρχικά
17,5 ευρώ
Αρχικά είχε 17,50€ Έστω «x» τα αρχικά χρήματα που είχε στο συρτάρι. Βάσει των δεδομένων της εκφώνησης του προβλήματος έχουμε:
2χ-20=γ (1)
2γ-20=ω (2)
2ω-20=ψ (3)
ψ=0 (4)
Αντικαθιστούμε τη (4) στη (3) κι’ έχουμε:
2ω-20=ψ —> 2ω-20=0 —> 2ω=20 —> ω=20/2 —> ω=10 (5)
Αντικαθιστούμε τη (5) στη (2) κι’ έχουμε:
2γ-20=ω —> 2γ-20=10 —> 2γ-20=10 —> 2γ=10+20 —> 2γ=30 —> γ=30/2 —> γ=15 (6)
Αντικαθιστούμε την (6) στην (1) κι’ έχουμε:
2χ-20=γ —> 2χ-20=15 —> 2χ=15+20 —> 2χ=35 —> χ=35/2 —> χ=17,50 (7)
Επαλήθευση:
2χ-20=γ —> 2*17,50-20=35-20=15
2γ-20=ω —> 2*15-20=30-20=10
2ω-20=ψ —>2*10-20=20-20=0=ψ
17,5 (2Χ17,5-20=15)(15Χ2=30-20=10)(2Χ10=20-20-0)