Το άθροισμα των ψηφίων ενός διψήφιου αριθμού είναι εννέα (9).
Αν αντιστρέψουμε τη σειρά των ψηφίων του, προκύπτει αριθμός κατά 45 μικρότερος.
Ποιος είναι ο διψήφιος αριθμός;
Η απάντηση να διατυπωθείμε γνώσεις δημοτικού και με γνώσεις γυμνασίου.
Προτάθηκε από Carlo de Grandi
Το 72 είναι ο ζητούμενος αριθμός.
Οι διψήφιοι με άθροισμα ψηφίων 9 είναι οι :
90, 81, 72, 63, 54, 45, 36, 27, 18.
Αφού όταν αντιστρέψουμε τα ψηφία προκύπτει αριθμός μικρότερος, θα πρέπει το ψηφίο των δεκάδων να είναι μεγαλύτερο από το ψηφίο των μονάδων.
Μας μένουν οι :
81, 72, 63, 54.
81-18=63
72-27=45
63-36=27
54-45=9
Επομένως ο ζητούμενος αριθμός είναι το 72.
ΔΗΜΟΤΙΚΟΥ ΨΑΞΙΜΟ ΠΑΜΕ 27, 7
ΓΥΜΝΑΣΙΟΥ Χ+Ψ=9,Ψ-Χ=5ΑΡΑ Ψ=7, Χ=2
Με γνώσεις Δημοτικού:
Ο διψήφιος αριθμός είναι ο 27. Με τους φυσικούς ακέραιους αριθμούς 1, 2, 3, 4, 5, 6, 7, και 8 αθροίζοντας τους κατά ζεύγη σχηματίζουμε τον αριθμό 9:
1+8=9
2+7=9
3+6=9
4+5=9
Από τα ανωτέρω ζεύγη λαμβάνουμε τους διψήφιους αριθμούς:
18, 27, 36, και 45
Αντιστρέφοντας τους ανωτέρω διψήφιους αριθμούς λαμβάνουμε τους διψήφιους αριθμούς:
81, 72, 63, και 54
Με δοκιμές βλέπουμε ότι οι διψήφιοι αριθμοί 27 και 72 ικανοποιούν τη συνθήκη
του προβλήματος:
81-18 = 63 απορρίπτεται.
72-27 = 45 αποδεκτό
63-36 = 27 απορρίπτεται.
54-45 = 9 απορρίπτεται.
Με γνώσεις Γυμνασίου:
Έστω «α και β» τα ψηφία του διψήφιου αριθμού, ο οποίος εάν αντιστραφεί
γίνεται «βα» και είναι της μορφής (10β+α). Βάσει των δεδομένων της εκφώνησης
του προβλήματος έχουμε τις εξισώσεις:
α+β=9 (1)
10α+β+45=10β+α (2)
Από την (1) συνάγουμε ότι:
α+β=9 —> α=9-β (3)
Αντικαθιστούμε τη (3) στη (2) κι’ έχουμε:
10α+β+45=10β+α —> 10*(9-β)+β+45=10β+9-β —> 90-10β+β+45=10+9-β —>
90-9β+45=9β+9 —> 9β+9β=90+45-9 —> 18β=126 —> β=126/18 —> β=7 (4)
Αντικαθιστούμε τη (4) στη (3) κι’ έχουμε:
α=9-β —> α=9-7 —> α=2 (5)
Επαλήθευση:
α+β=9 —> 2+7=9
10α+β+45=10β+α —> 10*2+7+45=10*7+2 —> 20+7+45=70+2 —> 20+7+45=72 ο. ε. δ.
Ή
α+β=9 (1)
(10β+α)-(10α+β)=45 (2)
Από την (1) συνάγουμε ότι:
α+β=9 —> α=9-β (3)
Αντικαθιστούμε τη (3) στη (2) κι’ έχουμε:
(10β+α)-(10α+β)=45 —> 10β+9-β-[10*(9-β)+β]=45 —> 10β+9-β-(90-10β+β)=45 —>
10β+9-β-90+10β-β=45 —> 20β-2β=45+90-9 —> 18β=126 —> β=126/18 —> β=7 (4)
Αντικαθιστούμε τη (4) στη (3) κι’ έχουμε:
α=9-β —> α=9-7 —> α=2 (5)
Επαλήθευση:
α+β=9 —> 2+7=9
(10β+α)-(10α+β)=45 —> [(10*7)+2]-[(10*2)+7]=45 —> (70+2)-(20+7)=45 —> 72-27=45 ο.ε.δ.
Πηγή: http://lisari.blogspot.gr/2017/06/2017_25.html